Lane, S.N. and Chandler, J.H. and Richards, K.S. (1994)

Developments in monitoring and modelling small-scale river bed topography

Article
Cite key
Lane1994
Language
en
Journal
Earth Surface Processes and Landforms
Volume
19
Pages
349-368
URL
http://onlinelibrary.wiley.com/doi/10.1002/esp.3290190406/pdf
Description
Recent research in fluvial geomorphology has emphasized the spatially distributed feedbacks amongst river channel topography, flow hydraulics and sediment transport. Although understanding of the behaviour of dynamic river channels has been increased markedly through detailed within-channel process studies, less attention has been given to the accurate monitoring and terrain modelling of river channel form using three-dimensional measurements. However, such information is useful in two distinct senses. Firstly, it is one of the necessary boundary conditions for a physically based, deterministic modelling approach in which three-dimensional topography and river discharge drive within-channel flow hydraulics and ultimately spatial patterns of erosion and deposition and therefore channel change. Secondly, research has shown that an alternative means of estimating the medium-term bedload transport rate can be based upon monitoring spatial patterns of erosion and deposition within the river channel. This paper presents a detailed assessment of the distributed monitoring and terrain modelling of river bed topography using a technique that combines rigorous analytical photogrammetry with rapid ground survey. The availability of increasingly sophisticated terrain modelling packages developed for civil engineering application allows the representation of topographic information as a landform surface. Intercomparison of landform surfaces allows visualization and quantification of spatial patterns of erosion and deposition. A detailed assessment is undertaken of the quality of the morphological information acquired. This allow some general comments to be made concerning the use of more traditional methods to monitor and represent small-scale river channel morphology.